Thirtieth Singapore Physics Olympiad Theoretical Paper Part A

Saturday 21 October 2017

Organised by

Institute of Physics

In conjuction with

National University of Singapore National Institute of Education, Nanyang Technological University, Ministry of Education, Singapore

And sponsored by

Micron Technology Foundation, Inc

Instructions to Candidates

- 1. This is a 1.5 hour paper.
- 2. This paper consists of four (4) questions printed on twelve (12) pages.
- 3. Attempt all questions. Marks allocated for each part of a question are indicated in the brackets [].
- 4. Write your answers in the space provided in the booklet.
- 5. If you need working paper, you may request from the invigilators.
- 6. No books or documents relevant to the test may be referred during the examination.

AME:	
CHOOL:	-

1. [10 marks] A planet is in a circular orbit about a massive star of mass M . The star undergoes a spherical symmetric explosion where its outer envelope is ejected to a distance well beyond that of the planet's orbit. The remnant of the star has mass M' which is still much greater than the mass of the planet. Find the eccentricity the new orbit of the planet. Assume that the mass loss is instantaneous and that the planet itself is unaffected the explosion.	he of
	_

2. This question introduces the least time principle for light propagation, due to Pierre de Fermat, the 17th century French lawyer and mathematician who is also famous for his "last theorem".

The principle is that light "chooses" to take the path that allows it to go from one point to another in the shortest possible time, compared to any other path between those points.

Assume that the speed of light in a medium is inversely proportional to the refractive index of the medium.

To keep things simple, we will consider light confined in two dimensional space, so it only travels within a plane.

(a) [2 marks] Suppose that light must go from point A to point B in Figure 1. Using Fermat's principle, sketch the path on Figure 1. Label the path (a).

Figure 1: Path of light from A to B.

(b)	Suppose tha	at light m	ıust go from	point A	to point	В,	but must impinge	upon the x -ax	$is\ exactly\ once.$
-----	-------------	------------	--------------	---------	----------	----	------------------	------------------	----------------------

(i) [1 mark] For an arbitrary path, let the variable x be the x -coordinate of the intersection with the x -ax	is. Write
down an expression for the length of an arbitrary path, in terms of x .	

(c) [4 marks] Suppose that light must travel in two different media with refractive index $n_1 < n_2$, going from point A to point C in Figure 2. The y-axis sharply divides the two media. Use Fermat's principle to determine the path chosen. Comment on the angles.

Figure 2: Path of light from A to C.

to 26 μg re	S. In a sample of espectively. The a	old groundwater i	n a cave, the ma	sses of $^{26}\mathrm{Cl}$ and 26	$^6{ m S}$ were measured t	with 1.9% probability to be 20 $\mu { m g}$ and 0.36 m the present. Find
the l	nalf-life of ²⁶ Cl.				-	-

4. [10 marks] An infinite capacitor network is connected to an AC voltage supply of 220 V, 50 Hz. The capacitance of each capacitor is $C=1\mu F$.

Find the current through the ideal AC ammeter. Express your answer in terms of three significant figures.

General Data Sheet

Speed of light in vacuum		c	=	$299\ 792\ 458\ \mathrm{m\cdot s^{-1}}$
Vacuum permeability (ma	gnetic constant)	μ_0	=	$4\pi \times 10^{-7} \text{ kg} \cdot \text{m} \cdot \text{A}^{-2} \cdot \text{s}^{-2}$
Vacuum permittivity (elec	trical constant)	ε_0	=	$8.854\ 187\ 817 \times 10^{-12}\ \mathrm{A}^2 \cdot \mathrm{s}^4 \cdot \mathrm{kg}^{-1} \cdot \mathrm{m}^{-3}$
Elementary charge		e	=	$1.602\ 176\ 620\ 8(98) \times 10^{-19}\ \mathrm{A\cdot s}$
Mass of the electron		$m_{ m e}$	=	$9.109\;383\;56(11)\times 10^{-31}\;\mathrm{kg}$
			=	$0.510 998 946 1(31) \frac{\text{MeV}}{c^2}$
Mass of the proton		$m_{ m p}$	=	$1.672\ 621\ 898(21) \times 10^{-27}\ \mathrm{kg}$
		•	=	938.272 081 3(58) $\frac{\text{MeV}}{c^2}$
Mass of the neutron		$m_{ m n}$	=	$1.674\ 927\ 471(21) \times 10^{-27}\ \mathrm{kg}$
			=	939.565 413 3(58) $\frac{\text{MeV}}{c^2}$
Unified atomic mass unit		u	=	$1.660\ 539\ 040(20) \times 10^{-27}\ \mathrm{kg}$
Rydberg constant		R_{∞}	=	$10\ 973\ 731.568\ 508(65)\ \mathrm{m}^{-1}$
Universal constant of gra	vitation	\boldsymbol{G}	=	$6.674~08(31) \times 10^{-11}~\mathrm{m^3 \cdot kg^{-1} \cdot s^{-2}}$
Acceleration due to gravit	ty (in Zurich)	g	=	$9.81 \text{ m} \cdot \text{s}^{-2}$
Planck's constant		h	=	$6.626\ 070\ 040\ (81) \times 10^{-34}\ \mathrm{kg\cdot m^2\cdot s^{-1}}$
Avogadro number		$N_{ m A}$	=	$6.022\ 140\ 857\ (74) \times 10^{23}\ \mathrm{mol}^{-1}$
Molar gas constant		R	=	$8.314\ 4598(48)\ \mathrm{kg\cdot m^2\cdot s^{-2}\cdot mol^{-1}\cdot K^{-1}}$
Molar mass constant		M_{u}	=	$1 \times 10^{-3} \text{ kg} \cdot \text{mol}^{-1}$
Boltzmann constant		$k_{ m B}$	=	$1.380~648~52(79) \times 10^{-23}~\mathrm{kg \cdot m^2 \cdot s^{-2} \cdot K^{-1}}$
Stefan-Boltzmann consta	nt	σ		$5.670~367~(13) \times 10^{-8}~{\rm kg\cdot s^{-3}\cdot K^{-4}}$