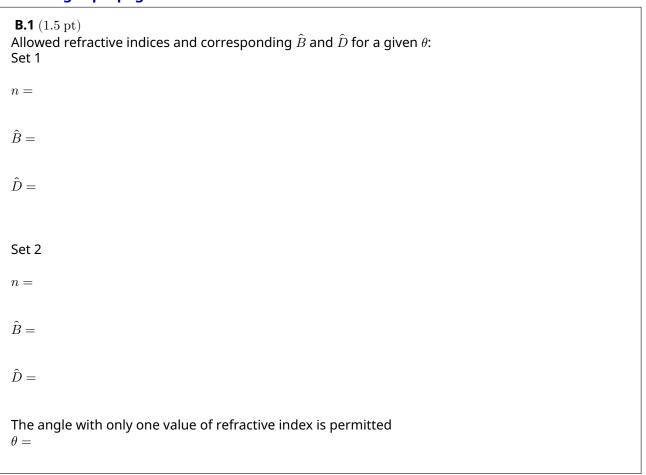

$v_r =$



Ray tracing and generation of entangled light

Part A. Light propagation in isotropic dielectric media

Part B. Light propagation in uniaxial dielectric media

B.2 $(0.8 \mathrm{pt})$
Set 1 Polarization $\hat{E}=$
Which wave (ordinary or extraordinary):
an lpha =
Set 2 Polarization $\hat{E}=$
Which wave (ordinary or extraordinary):
an lpha =
B.3 $(0.6~\mathrm{pt})$ Set 1 Refractive index $n=$
Polarization $\hat{E}=$
Which wave (ordinary or extraordinary):
Set 2 Refractive index $n =$
Polarization $\hat{E}=$
Which wave (ordinary or extraordinary):

B.4 (0.8 pt)	
Set 1	
$\tan\alpha_r =$	
$v_r =$	
$\hat{S}=$	
Set 2	
5612	
$\tan\alpha_r =$	
$v_r =$	
$\hat{S}=$	
$n_s =$	(in terms of \hat{S} , \hat{x} , \hat{z} , n_o , and n_e)

A2-4
English (Official)

 $\begin{array}{l} \textbf{B.5} \; (1.1 \; \mathrm{pt}) \\ \bar{A} = \end{array}$

 $\bar{B} =$

 $\bar{C} =$

 $\tan\theta_2 = \qquad \qquad (\phi = 0)$

 $\tan\theta_2 = \qquad \qquad (\phi = \tfrac{\pi}{2})$

Part C. Entanglement of light

 $\mathbf{C.1} \; (0.8 \; \mathrm{pt})$

All possible relations between ω , ω_1 , ω_2 and \vec{k} , \vec{k}_1 , \vec{k}_2 Relation 1:

which conservation laws:

Relation 2:

Which conservation laws:

Equations for splitting ω and \vec{k} into ω_1 , ω_2 and \vec{k}_1 , \vec{k}_2 :

C.2 (0.8 pt)
Impossible ways of splitting:
C.3 (1.3 pt)
M =
N =
L =
Angle between the axis of the cone and z^\prime axis:
Angle of the cone:
Angle of the cone:
Angle of the cone: C.4 (0.8 pt)
C.4 (0.8 pt)
C.4 (0.8 pt)
$\textbf{C.4} \ (0.8 \ \mathrm{pt})$ $P(\alpha,\beta) =$
$\textbf{C.4} \ (0.8 \ \mathrm{pt})$ $P(\alpha,\beta) =$
$ \textbf{C.4} \ (0.8 \mathrm{pt}) $ $ P(\alpha,\beta) = $ $ P(\alpha,\beta_{\perp}) = $
$ \textbf{C.4} \ (0.8 \mathrm{pt}) $ $ P(\alpha,\beta) = $ $ P(\alpha,\beta_{\perp}) = $

C.5 (0.5 pt)	
Expression of $S=$	
$Values \; of \; S =$	
Consistency with classical theories:	