Part A. Larmor Precession

1. From the two equations given in the text, we obtain the relation

$$\frac{d\boldsymbol{\mu}}{dt} = -\gamma \boldsymbol{\mu} \times \mathbf{B}.\tag{1}$$

Taking the dot product of eq (1). with μ , we can prove that

$$\boldsymbol{\mu} \cdot \frac{d\boldsymbol{\mu}}{dt} = -\gamma \boldsymbol{\mu} \cdot (\boldsymbol{\mu} \times \mathbf{B}),$$

$$\frac{d|\boldsymbol{\mu}|^2}{dt} = 0,$$

$$\boldsymbol{\mu} = |\boldsymbol{\mu}| = \text{const.}$$
(2)

Taking the dot product of eq. (1) with \mathbf{B} , we also prove that

$$\mathbf{B} \cdot \frac{d\boldsymbol{\mu}}{dt} = -\gamma \mathbf{B} \cdot (\boldsymbol{\mu} \times \mathbf{B}),$$

$$\mathbf{B} \cdot \frac{d\boldsymbol{\mu}}{dt} = 0,$$

$$\mathbf{B} \cdot \boldsymbol{\mu} = \text{const.}$$
(3)

An acute reader will notice that our master equation in (1) is identical to the equation of motion for a charged particle in a magnetic field

$$\frac{d\mathbf{v}}{dt} = \frac{q}{m}\mathbf{v} \times \mathbf{B}.\tag{4}$$

Hence, the same argument for a charged particle in magnetic field can be applied in this case.

2. For a magnetic moment making an angle of ϕ with **B**,

$$\frac{d\boldsymbol{\mu}}{dt} = -\gamma \boldsymbol{\mu} \times \mathbf{B},$$

$$|\boldsymbol{\mu}| \sin \phi \frac{d\theta}{dt} = \gamma |\boldsymbol{\mu}| B_0 \sin \phi,$$

$$\omega_0 = \frac{d\theta}{dt} = \gamma B_0.$$
(5)

Part B. Rotating frame

1. Using the relation given in the text, it is easily shown that

$$\left(\frac{d\boldsymbol{\mu}}{dt}\right)_{\text{rot}} = \left(\frac{d\boldsymbol{\mu}}{dt}\right)_{\text{lab}} - \boldsymbol{\omega} \times \boldsymbol{\mu}$$

$$= -\gamma \boldsymbol{\mu} \times \mathbf{B} - \omega \mathbf{k}' \times \boldsymbol{\mu}$$

$$= -\gamma \boldsymbol{\mu} \times \left(\mathbf{B} - \frac{\omega}{\gamma} \mathbf{k}'\right)$$

$$= -\gamma \boldsymbol{\mu} \times \mathbf{B}_{\text{eff}}.$$
(6)

Note that \mathbf{k} is equal to \mathbf{k}' as observed in the rotating frame.

Physics of Spin Page 1 of 5

2. The new precession frequency as viewed on the rotating frame S' is

$$\vec{\Delta} = (\omega_0 - \omega) \mathbf{k}',$$

$$\Delta = \gamma B_0 - \omega.$$
(7)

3. Since the magnetic field as viewed in the rotating frame is $\mathbf{B} = B_0 \mathbf{k}' + b \mathbf{i}'$,

$$\mathbf{B}_{\text{eff}} = \mathbf{B} - \omega / \gamma \mathbf{k'} = \left(B_0 - \frac{\omega}{\gamma} \right) \mathbf{k'} + b\mathbf{i'},$$

and

$$\Omega = \gamma |\mathbf{B}_{\text{eff}}|,
= \gamma \sqrt{\left(B_0 - \frac{\omega}{\gamma}\right)^2 + b^2}.$$
(8)

4. In this case, the effective magnetic field becomes

$$\mathbf{B}_{\text{eff}} = \mathbf{B} - \omega / \gamma \mathbf{k}'$$

$$= \left(B_0 - \frac{\omega}{\gamma} \right) \mathbf{k}' + b(\cos 2\omega t \mathbf{i}' - \sin 2\omega t \mathbf{j}')$$
(9)

which has a time average of $\overline{\mathbf{B}_{\text{eff}}} = \left(B_0 - \frac{\omega}{\gamma}\right)\mathbf{k}'$.

Part C. Rabi oscillation

1. The oscillating field can be considered as a superposition of two oppositely rotating field:

$$2b\cos\omega_0 t\mathbf{i} = b(\cos\omega_0 t\mathbf{i} + \sin\omega_0 t\mathbf{j}) + b(\cos\omega_0 t\mathbf{i} - \sin\omega_0 t\mathbf{j})$$

which gives an effective field of (with $\omega = \omega_0 = \gamma B_0$):

$$\mathbf{B}_{\text{eff}} = \left(B_0 - \frac{\omega}{\gamma}\right)\mathbf{k'} + b\mathbf{i'} + b(\cos 2\omega_0 t\mathbf{i'} - \sin 2\omega_0 t\mathbf{j'}).$$

Since $\omega_0 \gg \gamma b$, the rotation of the term $b(\cos 2\omega_0 t\mathbf{i}' - \sin 2\omega_0 t\mathbf{j}')$ is so fast compared to the frequency γb . This means that we can take the approximation

$$\mathbf{B}_{\text{eff}} \approx \left(B_0 - \frac{\omega}{\gamma} \right) \mathbf{k}' + b\mathbf{i}' = b\mathbf{i}', \tag{10}$$

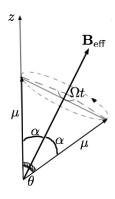
where the magnetic moment precesses with frequency $\Omega = \gamma b$.

As $\Omega = \gamma b \ll \omega_0$, the magnetic moment does not "feel" the rotating term $b (\cos 2\omega_0 t \mathbf{i'} - \sin 2\omega_0 t \mathbf{j'})$ which averaged to zero.

Physics of Spin Page 2 of 5

2. Since the angle α that μ makes with \mathbf{B}_{eff} stays constant and μ is initially oriented along the z axis, α is also the angle between \mathbf{B}_{eff} and the z axis which is

$$\tan \alpha = \frac{b}{B_0 - \frac{\omega}{\gamma}}. (11)$$



From the geometry of the system, we can show that $(\cos \theta = \mu_z/\mu)$:

$$2\mu \sin \frac{\theta}{2} = 2\mu \sin \alpha \sin \frac{\Omega t}{2},$$

$$\sin^2 \frac{\theta}{2} = \sin^2 \alpha \sin^2 \frac{\Omega t}{2},$$

$$\frac{1 - \cos \theta}{2} = \sin^2 \alpha \frac{1 - \cos \Omega t}{2},$$

$$\cos \theta = 1 - \sin^2 \alpha + \sin^2 \alpha \cos \Omega t,$$

$$\cos \theta = \cos^2 \alpha + \sin^2 \alpha \cos \Omega t.$$

So, the projected magnetic moment along the z axis is $\mu_z(t) = \mu \cos \theta$ and the magnetization is

$$M = N\mu_z = N\mu \left(\cos^2 \alpha + \sin^2 \alpha \cos \Omega t\right). \tag{12}$$

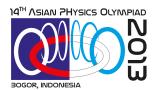
Note that the magnetization does not depend on the reference frame S or S' (μ_z has the same value viewed in both frames).

Taking $\omega = \omega_0 = \gamma B_0$, the angle α is 90^0 and $M = N\mu \cos \Omega t$.

3. From the relations

$$\begin{split} P_{\uparrow} - P_{\downarrow} &= \frac{\mu_z}{\mu} = \cos \theta, \\ P_{\uparrow} + P_{\downarrow} &= 1, \end{split}$$

Physics of Spin Page 3 of 5



we obtain the results ($\omega = \omega_0$)

$$P_{\downarrow} = \frac{1 - \cos \theta}{2}$$

$$= \frac{1 - \cos^{2} \alpha - \sin^{2} \alpha \cos \Omega t}{2}$$

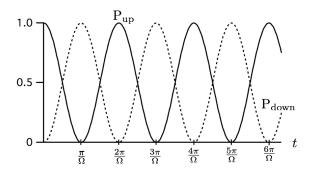
$$= \sin^{2} \alpha \frac{1 - \cos \Omega t}{2}$$

$$= \frac{b^{2}}{\left(B_{0} - \frac{\omega}{\gamma}\right)^{2} + b^{2}} \sin^{2} \frac{\Omega t}{2}$$

$$= \sin^{2} \frac{\Omega t}{2}, \qquad (13)$$

and

$$P_{\uparrow} = \frac{b^2}{\left(B_0 - \frac{\omega}{\gamma}\right)^2 + b^2} \cos^2 \frac{\Omega t}{2} = \cos^2 \frac{\Omega t}{2}.$$
 (14)



Part D. Measurement incompatibility

1. In the x direction, the uncertainty in position due to the screen opening is Δx . According to the uncertainty principle, the atom momentum uncertainty Δp_x is given by

$$\Delta p_x \approx \frac{\hbar}{\Delta x}$$

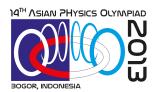
which translates into an uncertainty in the x velocity of the atom,

$$v_x \approx \frac{\hbar}{m\Delta x}.$$

Consequently, during the time of flight t of the atoms through the device, the uncertainty in the width of the beam will grow by an amount δx given by

$$\delta x = \Delta v_x t \approx \frac{\hbar}{m\Delta x} t.$$

Physics of Spin Page 4 of 5



So, the width of the beams is growing linearly in time. Meanwhile, the two beams are separating at a rate determined by the force F_x and the separation between the beams after a time t becomes

 $d_x = 2 \times \frac{1}{2} \frac{F_x}{m} t^2 = \frac{1}{m} |\mu_x| Ct^2.$

In order to be able to distinguish which beam a particle belongs to, the separation of the two beams must be greater than the widths of the beams; otherwise the two beams will overlap and it will be impossible to know what the x component of the atom spin is. Thus, the condition must be satisfied is

$$d_{x} \gg \delta x,$$

$$\frac{1}{m} |\mu_{x}| Ct^{2} \gg \frac{\hbar}{m\Delta x} t,$$

$$\frac{1}{\hbar} |\mu_{x}| \Delta x Ct \gg 1.$$
(15)

2. As the atoms pass through the screen, the variation of magnetic field strength across the beam width experienced by the atoms is

$$\Delta B = \Delta x \frac{dB}{dx} = C\Delta x.$$

This means the atoms will precess at rates covering a range of values $\Delta\omega$ given by

$$\Delta\omega = \gamma \Delta B = \frac{\mu_z}{\hbar} \Delta B = \frac{|\mu_x|}{\hbar} C \Delta x,$$

and, if previous condition in measuring μ_x is satisfied,

$$\Delta \omega t \gg 1.$$
 (16)

In other words, the spread in the angle $\Delta \omega t$ through which the magnetic moments precess is so large that the z component of the spin is completely randomized or the measurement uncertainty is very large.

Physics of Spin Page 5 of 5